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Abstmcl: Eame So. ajitndionalized decalin daiwdw. has ken syntrhriscd in up lo 86% ee by aw aqnandric 
Heck reaction stariing with the allylic alcohol 3. Emu So was converted 10 a key inttrmdiate for wmo&pin. 

We have already demonstrated that the asymmetric Heck reaction is a powerful method for the 

synthesis of various optically active carbon skeletons including derivatives of decalin. hydrindan, and 

bicyclo[3.3.O]octane.t~ 2 For example in the decalm system, we have observed high asymmetric induction (up 

to91%ee)inthecyclixationoflto2a. *d This triene 2a has been functionali&, albeit with low efftciency. 

and because of our desire to develop highly functional&d chii building blocks. we have examined bisallylic 

alcohols as substrates for the asymmetric Heck teaction. Here we would like to report a catalytic asymmetric 

synthesis of enone 5a (86% cc). a decalm derivative similar to the Wieland-Miescher ketone,3 and conversion 

of Sa to a key intermediate 12 in the synthesis of vemolepin, an elemanolide sesquiterpene dilactone which 

has antitumor activity.4 

schemeg, 

Our strategy is outlined in Scheme 2. Treatment of a-allylic alcohol 3 with a chiral palladium catalyst 

was expected to give intermediate 4 via oxidative addition of the vinyl triflate to palladium and 

enantioselective insertion of the alkenylpalladium to one of the allylic alcohol moieties. Syn-B-hydride 

elimination was then anticipated to generate enone Sa. a compound which was expected to be amenable to 

further functionalization. 

3 R-f% !ia R=Pv 
!5b R=H 
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Allylic alcohol 3 was readily prepared by allylic oxidation of 1 and stereoselective reduction of the 

resulting ketone.5 Because aromatic solvents such as benzene and toluene have generally provided the best 

results in the asymmetric Heck reaction of triflates,ld* 2c initial reactions were run in benzne with Pd(OAck 

(4 mol %), K2CO3 (2 tnol equiv) and a variety of chiral ligands (9 mol%).6 The best conditions employed 

(R)-BINAP’ and afforded the desired cnone (+)Grt in 51% yield, Unfortunately, however, the enantiomeric 

excess of Sa was only 28% as determined by HPLC analysis (DAICEL CHIKALPAK AS, hexane3- 

propanol. 4: 1) of alcohol Sb, obtained on treatment of Sa with K$OJ ln MeOH at 60 ‘C (80%). Assignment 

of the absolute configuration was achieved by converting Sa to known triene 2b.g. la 

Table 1. Catalytic Asymmetric Cyclixation of Pro&ii T&late 3 Promoted by 
Pd(OAc)T(R)-BINAP Catalyst?) 

entry solvent time yield of !!a 
01) (%) (% 

1 DMSO 12 -b) 
2 CH3CN 24 38 16 
3 DMP 72 -b) 

: EE E :: z 

76 
dioxane 78 53 
benzene 

8c) toluene E :; 
4: 
28 

1; 
mesitylene 
CHc13 8: 

36 46 
-b) 

11 QcHzQIzcl 144 37 76 

a) AU macions wee camicd out with Pd(OAc)2 (4 mol ‘k). (R)-BINAP (9 mol 46). and K2CO3 (2 mol 
cquiv)inthesolventshownat6ooCunder~argonatomasphen. 
b) Complex mixture. c) pd(OAch (5 mol %) and (R)-BJNAP (15 mol %) wue used. 

Solvent effects wen then examined (Table 1). In contrast to the results obtained with substrates such 

as l,ld cyclixation of 3 was found to occur with the highest asymmetric induction (76% ee) in dichloroethane; 

however, the chemical yield of 5a was not satisfactory. In order to improve this yield and the ee of Sa, further 

investigations were canied out. The best conditions found employed Pd2(dba)sCHQ (9 mol% of Pd), (R)- 

BINAP (11.3 mol%) and *BuOH (11 equiv) as an additive (Table 2). With this catalyst and additive, 

cyclixation of 3 proceeded cleanly in dichloroethane at 60 ‘C to yield Sa in 86% ee and a chemical yield of 

Table 2. Catalytic Asymmetric Cyclization of Prochiral Triflate 3 Promoted 
by Pdz(dba)s-(R)-BlNAP Catalyst.@ 

OPV 

entry solvent additive Pd/BINAP time 
(11 equiv) (mol %) 

yield of Sa 
01) (%) $) 

: 
gzCl& - 72 Lzb 0 // 

: 
QcHgc~ - 

El.3 ;: 58b) ;z 6 

r-BuOH 

5 
g~,cl r-BuOH g.; :: :: 

78 OPV 
86 

9l9 * 
83 36c) 42 

6 r-BuOH 109 62 56 cod> 

/ 

0 / / 

a) All naclrms wcxc carried out in the solvent shown at 60 ‘C under an argon atomosphere in the 
7 

prcsenw of Km (2 mol cquiv). b) 6 was formed in 17% yield. c) 7 was formed in 15% yield 
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76%.9 

As can be seen addition of tBuOH improved the chemical yield of Sa, and suppressed formation of 

ketone 6 and/or 7. Formation of these by-products suggests that the biiallyllc alcohol ln 3 is oxidi& either 

byoxidativeadditionotcfieO-HbondtoPd(O)abynucleophilicattackoftherlLoaidetoW+followedbyB 

hydride ellmiition (scheme 3).l@ 11 It is likely that %OH, an alcohol no phycbgaw. pmvcnts interaction 

of the substrate hydroxyl group with palladlmn, thaeby rupptessing oxldatlon. 

Scheme 3 R 

3 (R = CH&W’v) - 
-6 

I 
8 

Having completed the asymmetric synthesis of enone 5a. we have gone on to demonstrate the 

usefulness of this enone as a chiral building block. As shown in Scheme 4. (+)-Sa: [a]9 +106 ’ (c lot), 

CHCl3) (86% ee) was converted in 9 steps to a key intermediate (-)-12: [a]$4 -172 ’ (c 0.47, CHCl3) for 

Danishefsky’s synthesis of vemolepln 13. 1= In spite of a variety of synthetic approaches and total syntheses 

of (f)-13, no asymmetric synthesis of (+)-13 has been reported.12 Thus, our asymmetric synthesis of 12 

provides the first formal synthetic route to (+)-13. 

Scheme 4 ,OPv /OH 

om a.b _(a c,d _cj$j emf _ 

k !ja 0 H s 10 

(a) ethylone glyml. T&H, benxeno. mflux. 3 h. 91% (b) LiAlH,. Et& 0 Oc. 0.5 h. 100%; (c) PDC. MS4A, CH&I, 

1.5 h. 80%; (d) i) NaCU&. NaHw,. 2-rnethyk2-butane. f-BuOH-H&I ( 2 : 1 ). 1 h; ii) CHxNz, Et@. 7Q% ( 2 steps ); 

(0) CroS, DMP. CH&, 0 *C. 9 h, 54% (SM Recovery 21%): (1) NaSH,, CeCb. M&f-f-THF ( 2 :l ), -78 OC. w (Q) 

k0f-L PPhs, DEAD. MF. 0 OC. 1 h; (h) LDH. MeOH-“@ (3 : 1). 0.5h; 10% HCI; (i) AC&. NaOAc, 34% ( 3 steps ). 

In conclusion, we have achieved a catalytic asymmetric synthesis of enone 5a and 12, the latter being 

an intermediate in the synthesis of vemolepin. It is our belief that enone Sa will be a versatile chii building 

block for the syntheses of a variety of natural products having the decalin skeleton. 
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